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Abstract

The massive sensing of cultural action served through
online platforms, and the aggregation of vast samples
of cultural artifacts (e.g newspapers, images) has pro-
vided us with an unprecedented opportunity to embed
cultural acts and artifacts in high dimensional represen-
tation space for analysis, comparison, and the efficient
interactive elicitation of new cultural data, as from or-
dinal embedding. Existing research on culture and deep
learning often embeds a single modality - text, images,
more infrequently, networks and tables, rarely small-
sample qualitative cultural associations, and never to-
gether. In this position paper, we propose that cul-
tural data, their creation, proliferation, and consump-
tion should be studied together and ongoingly elicited
in the context of multi-modal neural representations. In
short: embed everything! Cultural representations that
align text, images, graphs, tables, elicited qualitative
associations, and more can capture and compare com-
plex cultural associations and reveal biases within dom-
inant representations that neither capture nor serve those
less present in training data. Within a high-dimensional
representation space, we can use distance measures to
study the full-spectrum influence of events, the dynam-
ics of cultural change, and identify clear distinctions be-
tween representations native to different populations.

Introduction

A deluge of digital content is generated daily by web-based
platforms and sensors that capture digital traces of commu-
nication and connection, and complex states of society, the
economy, and the world. In parallel, historical data is in-
creasingly digitized, and access to millions of books, im-
ages, historical documents, patents is easier than ever before.
Web archives such as Reddit and Wikipedia offer massive
samples of structured textual data with rich labels. Images
can be scraped from google search results, with aligned cap-
tions, and graphs of scientific citations and financial trans-
actions and trade data are readily available.

Indeed, many of these datasets have become the training
data for large pre-trained models of language and images.
These models are often used for various predictive down-
stream tasks, such as image classification or question an-
swering. What we propose is instead to aggregate each of
these datasets by a cultural label representing a fundamen-
tally multi-modal entity, such as a person, place, or object.
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After aggregating multi-modal data by cultural label, we
then integrate the data across modalities by learning joint
representations. For an author, for example, it could be in-
clude not only the content of their books, but also autobi-
ographical information, their position within a network of
letter correspondences, and their associations by others on
social media. Similarly, a cultural city representation might
include tabular demographic information, economic indica-
tors, as well as images of the city, and text (tweets, posts,
Wikipedia articles) associated with the city. By jointly learn-
ing these representations, these cultural samples can now be
used for a variety of tasks, from the elicitation of new cul-
tural data (e.g., Is London culturally closer to Paris or New
York?) to projections on cultural axes of interest (which au-
thor has rendered the most violent characters?) to identifica-
tions of the loci of cultural divergence. We refer to these ag-
gregated and integrated multi-modal representations as dig-
ital twins of culture.

Once we have a set of cultural objects and their represen-
tations, it is possible for us to align different cultural worlds.
For example, we could align artists over time, and ob-
serve their movements in style space, analogous to observ-
ing semantic drift in diachronic word embeddings (Hamil-
ton, Leskovec, and Jurafsky 2016). Alignment of embed-
ding spaces need not only occur across time; and other axes
such as language, or location can also be used. In this way,
it is possible to compare how different cultures represent the
same concept (Kozlowski, Taddy, and Evans 2018).

This process of aggregating, integrating, and aligning pro-
vides us with a framework to compare different cultural sam-
ples, across axes of time, language, or location. With aligned
embedding spaces, we can now measure distances between
cultural objects within and between worlds, similar to the
distance-based measures described in (Hamilton, Leskovec,
and Jurafsky 2016). It is also possible to project words onto
different cultural axes, as described in (Kozlowski, Taddy,
and Evans 2018), where the authors project words (such as
sports, or music genres) onto axes of gender, class, and race
to track the changing relationships between cultural dimen-
sions within society.

We argue that such a framework would help model the
factors and extent of cultural change, and the distinctions
and biases underlying specific cultural representations pro-
duced by Silicon Valley companies from selective and of-
ten privileged consumers underlying training data. Such a



framework could also lend itself to causal analysis, by ob-
serving the positions of cultural objects before and after
experiments are conducted. In the remainder of this posi-
tion paper, we discuss early and related work in using such
frameworks to extract cultural relationships; lay out a series
of steps to operationalize the framework for samples of cul-
tural acts and artifacts; discuss tasks and operations that can
profitably be performed on these aligned spaces.

Related Work

The notion of creating a high-dimensional representation
of actions and artifacts has been popular for capturing se-
mantic representations among words. The notion of cul-
tural spaces representing conceptual objects has its ori-
gins in the structuralism of early 20th century linguistics
(De Saussure 1916), and mid-20th Century psychology (Os-
good, Suci, and Tannenbaum 1957) and anthropology (Lévi-
Strauss 1963; ?), but large-scale cultural data was arguably
first embedded and analyzed in high-dimensional space with
the Latent Semantic Indexing (LSI) algorithm (Landauer
and Dumais 1997). The notion of vector representations
for words popularised by it has since been used extensively,
with methods moving from linear algebra and matrix fac-
torization to neural network approximations and extensions.
(Mikolov et al. 2013) introduced word2vec, which furthered
widespread use of such vectors and popularised embedding.
Glove ((Pennington, Socher, and Manning 2014)) used both
global and local occurrences to construct the cultural vector
spaces, and fastText (Joulin et al. 2016) used them to clas-
sify text. These embedding methods were static in nature,
but the elegance of high dimensional representations lies in
the way they can be further modified: having their geome-
tries entangled, morphed, and warped: work by (Faruqui
et al. 2014), (Jauhar, Dyer, and Hovy 2015), (Levy and
Goldberg 2014) are all examples, where syntactic structure
or lexical information was used to change the nature of the
embedding spaces; either to shift the associational distance
between words that would not normally lie close to one an-
other, or include other (e.g., syntactic) information in the
embedding. These spaces can carry desirable and undesir-
able cultural bias (Caliskan, Bryson, and Narayanan 2017),
which can be compensated for and corrected (Bolukbasi et
al. 2016).

Static word embedding models are the early prototypes
of our embedding everything framework, and provide inspi-
ration for our approach. Work by (Kozlowski, Taddy, and
Evans 2019) used word embedding models trained on dif-
ferent historical time periods to study how different cultural
dimensions related to each other. Word embedding models
also popularized analogy tasks, enforcing a semantic algebra
atop the geometry of the embedding. In the work by (Ko-
zlowski, Taddy, and Evans 2018), these linear algebra op-
erations are used to project words (generalised to concepts)
onto axes to score words along these dimensions. This al-
lows us to ask questions such as - where does basketball
lie on the cultural axis of gender, and how has it changed
over time? Another landmark paper in manipulating em-
bedding spaces is the work by (Hamilton, Leskovec, and
Jurafsky 2016), which used Procrustes alignment to mea-
sure distances between diachronic embedding spaces. Such

manipulations allow us to measure cultural associations and
differences in mathematically straightforward and conceptu-
ally elegant ways. An example of using such approaches for
linguistic and cultural explorations can be seen in (Thomp-
son, Roberts, and Lupyan 2020), where word embeddings
are used to demonstrate how meanings of common words
vary in ways that reflect user culture, history and geography.

Today, state-of-the-art embedding based approaches for
natural language are more often contextual and dynamic,
using large pre-trained language models such as BERT (De-
vlin et al. 2018) or the GPT family (Brown et al. 2020),
built using variants of the Transformer model (Vaswani et al.
2017). Embeddings produced by these models are equally
amenable to cultural analysis. It has been widely noted that
these large models are prone to problems such as toxic-
ity and biased training data (Bender et al. 2021), and that
there have been efforts to de-bias the contextual stereotypes
learned (Bartl, Nissim, and Gatt 2020). However, these bi-
ases reflect the social worlds on which the model was trained
— for us to explore the nature of cultural associations, we
want to work with the original models. Indeed, these large
models contain spaces of cultural relations culture within
them. There have already been attempts to use these embed-
dings and associated high dimensional spaces for knowledge
discovery, such as work by (Tshitoyan et al. 2019) where
they use unsupervised word embeddings to capture latent
knowledge from material science literature for materials pre-
diction. Combined corpora from chemistry and material sci-
ence could approximate the knowledge space well enough
to be able to uncover the underlying structure of the peri-
odic table and structure-function relationships in materials.
Exploring the topologies of these space can allow us to learn
about the history and structure of ideas. Consider (Linzhuo,
Lingfei, and James 2020), which demonstrates how central-
ized collaboration can reduce the space of ideas, and how
these patterns generalize to other contexts in modern schol-
arship and science. Such research shows the relations that
emerge in constructed high-dimensional spaces align with
cultural categories and meanings.

All the examples above deal with single-modality em-
bedding models, and allow us to explore cultural relation-
ships within this modality. Theories of embodied cogni-
tion and multi-modal culture have motivated multi-modal
embedding systems, which jointly learn representations of
inherently multi-modal cultural objects from multiple in-
put spaces. The earliest of such models used images in
conjunction with text, aligned either with image captions
or labels (Hwang and Grauman 2012; Rasiwasia et al. ;
Gong et al. 2014; Socher et al. 2014), and are also re-
ferred to as grounded models. Approaches in the embod-
ied cognition paradigm have used sources such as color
to embed further information (Guilbeault et al. 2020;
?), demonstrating that color adds important cognitively pro-
cessed associational information to word representations.
Today, state of the art multi-modal models for learning cul-
tural data are built using Transformer (e.g, VIIBERT (Lu
et al. 2019)) based models, and the now famous image-
to-text generation capacities of DALL-E come from such
grounded, multi-modal representations (Radford et al. 2021;
Ramesh et al. 2022).



Construction of such multi-modal models are still moti-
vated by their increased performance in downstream tasks,
such as classification or image generation. Shifting our fo-
cus to cultural objects and entities, opportunities for align-
ment increase. Specific text associated with an entity, such
as e-mail transcripts of conversations between members of
a company, or tweets associated with it, can add further
socially situated information to a representation. Meth-
ods such as network and graph embeddings (Grover and
Leskovec 2016), knowledge graph embeddings (Wang et
al. 2017), and hyperbolic graph embeddings (Chami et al.
2019) all offer us methods of casting relationships in high di-
mensional spaces that capture variation with distance. There
have been approaches that align Transformer based models
with graph embeddings, such as TaBERT (Yin et al. 2020)
or VGCNBERT (Lu, Du, and Nie 2020). High dimensional
spaces are also modeled as architectures of cognition (Kelly
et al. 2019), and there have been early attempts to include
general purpose multi-modal embedding approach such as
X2vec (Grohe 2020).

Related literature has become increasingly rich with at-
tempts to create multi-modal representations, as well as ap-
proaches to extract cultural information and relationships
from these embeddings. However, these approaches have
not been integrated in a theoretically grounded manner to
perform cultural analysis, and measure the effects of events
on cultural representations. We spend the next two sec-
tions describing potential approaches to create multi-modal,
high-dimensional representations of cultural entities (digital
twins), and the nature of relationships and bias we can un-
cover with these representations.

Embedding Everything: Multi-Modal
Cultural Representations

Cultural associations and relationships are complex and in-
herently multi-modal. To capture this, our representations of
cultural entities must also be complex and multi-modal. We
propose a three-step process to compare between and within
cultural entities along multiple axes - aggregate, integrate,
align. We illustrate this approach with three examples of
cultural subjects/objects - artists, cities, and fruits.

Aggregate

The first step is to aggregate each modality by label. For
artists, this could be: a dataset of artwork, a dataset of artist
biographies, and a network of influences and associations.
The first step would be to assign each modality to differ-
ent cultural identities in the set. With every identity in the
set linked to different data samples, now we aggregate these
representations. This can be done in multiple ways. One
is to create a representation for each data point - for ex-
ample, each artwork, or each description of the artist. We
then choose an aggregation technique, such as a weighted
average. We then have one representation for each modal-
ity. In the case of artists, each artist could have one aggre-
gated style vector or aggregated color vector, as described in
(Srinivasa Desikan, Shimao, and Miton 2022), along with a
document vector of the artist biographical data or personal
papers and interpersonal networks. We refer to this step of

collecting all datapoints per modality for each cultural iden-
tity as aggregation. We note that only such aggregated repre-
sentations would adequately capture complex intersectional
relationships that cultural entities lie in.

Integrate

Once we have embedded each identity in our set within dif-
ferent modalities, we can integrate our representation. One
approach to integration is to simply concatenate the repre-
sentations of each modality. In this case, we would have sep-
arate representations for each datapoint associated with our
object. For example, for fruits—a category at the intersection
of structure (biological seed-bearing entities) and function
(humans eat them), let us use images of fruits, their posi-
tion in the hierarchy of biological classification (i.e genus),
their chemical composition (e.g mol2vec (Jaeger, Fulle, and
Turk 2018)), and possibly their co-purchase within a shop-
ping basket (e.g., Nielsen shopping data). Integration here
would involve concatenating an aggregate image embed-
ding, topological embedding, chemical representation, and
co-purchase embedding and mapping it to the associated
fruit. Another approach is to perform a joint-learning of our
representation. Such an approach would involve training the
model with a downstream task or objective - for our fruits,
this could be to predict the rate of consumption by region.
We refer to this step of creating one multi-modal represen-
tation for each identity as integration.

Align

After each identity in our set of cultural subjects or objects
has a corresponding embedding, we can begin to measure re-
lationships within a domain. For example, if we have aggre-
gated and integrated representations of cities, we would now
be able to perform ordinal embedding tasks, and analogy op-
erations. This allows us to ask questions such as: what is the
equivalent of Pittsburgh in Spain, or pairs of cities in South
East Asia are culturally similar, but topologically different.
These comparisons can only be made if each of the data-
points associated with the entity is collected simultaneously,
as the representations are only useful when compared with
each other. It is here that the Procrustes alignment trick from
(Hamilton, Leskovec, and Jurafsky 2016) comes in handy,
and allows us to align embedding spaces across modalities
such as time or language, or we can use deep learning to
optimize alignments (Milbauer, Mathew, and Evans 2021).
This allows us to ask questions such as - in the last ten years,
which Australian city became economically closer to Singa-
pore? It also allows us to elicit new cultural information and
identify its difference from the majority within the models.
In this way, even “small” cultural data can be used to diag-
nose and potentially de-bias large” cultural data within the
original samples and models.

Measuring Dynamics and Processes of
Cultural Change

After we have aggregated, integrated, and aligned our data
and identities, we have opened ourselves to a world of po-
tential analysis. Diachronic ordinal embedding tasks will al-
low us to measure how relationships between triplets change



over time, and we can measure movements of entities along
the axes of our choosing. Previous work in unraveling cul-
tural artifacts from word embedding models (Kozlowski,
Taddy, and Evans 2018; Nelson 2021; Peng et al. 2021)
will be supercharged and vastly extended with multi-modal
representations. Measuring culture (Mohr et al. 2020)
with such neural approaches allows for complex patterns
to emerge that may be missed with simpler approaches,
to identify complex conflicts between embedded data, and
allow for the diagnosis of cultural bias in the representa-
tions underlying modern recommendation engines that ex-
tend well beyond their training domains, and may be irrel-
evant or exercise unanticipated and unwanted cultural influ-
ence.

Conclusion

Cultural markers for identities of diverse kinds are funda-
mentally multi-modal and complex. Measuring relation-
ships between groups of identities in a set of cultural sub-
jects and objects is difficult in settings that do not account
for multi-modality and emergent behaviour. Neural models
have been shown to handle diverse data sources and account
for complex behaviour. By representing cultural identities
in high-dimensional cultural spaces, we can use ordinal em-
bedding tasks and distance measures to study relationships
between cultural acts and artifacts that allow comparison,
bias identification, and potential correction or speciation.
We propose a method of aggregation, integration and align-
ment: embed everything! to study the dynamics of culture.
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